Role of the Rostral Ventrolateral Medulla in the Arterial Hypertension in Chronic Renal Failure
نویسندگان
چکیده
Sympathetic activation in chronic renal failure (CRF) is a major mechanism leading to the progression of renal disease and hypertension. In the present study, we tested the hypothesis that in CRF increased reactive oxygen species (ROS) production in the RVLM mediated by enhanced circulating Angiotensin II (Ang II) is an important mechanism leading to hypertension in CRF. In CRF rats we found an increase in the abundance of p47(phox) and gp91(phox) mRNA within the RVLM associated with a reduction of Ang II type 1 receptors (AT(1)) mRNA in the brainstem compared to controls (C). Tempol but not candesartan into the RVLM decreased MAP in CRF but not in C rats. GABA into the RVLM decreased MAP in CRF (63 ± 8 mmHg) more intensely than in C (33 ± 3 mmHg). The results suggest that increased oxidative stress within the RVLM has an important participation to maintain hypertension in CRF rats apparently independently of AT(1) Ang II receptors.
منابع مشابه
Cardiovascular responses produced by resistin injected into paraventricular nucleus mediated by the glutamatergic and CRFergic transmissions within rostral ventrolateral medulla
Objective(s): Resistin, as a 12.5 kDa cysteine-rich polypeptide, is expressed in hypothalamus and regulates sympathetic nerve activity. It is associated with obesity, metabolic syndrome and cardiovascular diseases. In this study, we investigated the neural pathway of cardiovascular responses induced by injection of resistin into paraventricular nucleus (PVN) with rostr...
متن کاملGlutaminergic receptors in rostral ventrolateral medulla mediate the cardiovascular responses to activation of bed nucleus of the stria terminalis in female rats
The bed nucleus of the stria terminalis (BST) has been known to contain estrogen (E)-concentrating neurons. In addition, injections of E into BST have been reported to potentiate the sympathoinhibitory arterial pressure (AP) and heart rate (HR) responses elicited by glutamate (Glu) stimulation. In this study, the effect of glutamate antagonist receptors in the rostral ventrolateral medulla (RVL...
متن کاملGlutaminergic receptors in rostral ventrolateral medulla mediate the cardiovascular responses to activation of bed nucleus of the stria terminalis in female rats
The bed nucleus of the stria terminalis (BST) has been known to contain estrogen (E)-concentrating neurons. In addition, injections of E into BST have been reported to potentiate the sympathoinhibitory arterial pressure (AP) and heart rate (HR) responses elicited by glutamate (Glu) stimulation. In this study, the effect of glutamate antagonist receptors in the rostral ventrolateral medulla (RVL...
متن کاملGABAergic receptors in rostral ventrolateral medulla mediates the cardiovascular responses to activation of bed nucleus of the stria terminalis in the female rat
The bed nucleus of the stria terminalis (BST) is known to contain estrogen (E)- concentrating neurons. In addition, injections of E into BST have been reported to potentiate the sympathoinhibitory arterial pressure (AP) and heart rate (HR) responses elicited by glutamate (Glu) stimulation. In this study, the effect of GABA-A antagonist receptors, bicuculline methiodide (BMI), in the rostral ven...
متن کاملGABAergic receptors in rostral ventrolateral medulla mediates the cardiovascular responses to activation of bed nucleus of the stria terminalis in the female rat
The bed nucleus of the stria terminalis (BST) is known to contain estrogen (E)- concentrating neurons. In addition, injections of E into BST have been reported to potentiate the sympathoinhibitory arterial pressure (AP) and heart rate (HR) responses elicited by glutamate (Glu) stimulation. In this study, the effect of GABA-A antagonist receptors, bicuculline methiodide (BMI), in the rostral ven...
متن کاملLesions in rostral ventromedial or rostral ventrolateral medulla block neurogenic hypertension.
Neurogenic hypertension results from the removal of inhibitory baroreceptor afferent input to vasomotor systems in the central nervous system. We sought to determine whether the bilateral destruction of neurons in the rostral ventrolateral or rostral ventromedial medulla, made using microinjections of N-methyl-D-aspartic acid (30 nmol in 200 nL), would block the acute increase in arterial press...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2010 شماره
صفحات -
تاریخ انتشار 2010